BUILDING DESIGN AND OPERATION

OVERVIEW

Buildings are responsible for roughly 40% of energy consumed in the U.S. yearly. This amounts to approximately 40 quadrillion Btu and is projected to increase steadily. The magnitude of load demand and its inherently variable nature present an increasingly difficult challenge for the utility grid to meet. In addition, California’s renewable portfolio standards mandate 33 percent of the state’s grid mix to be provided by renewables—a level at which studies conducted at UCI APEP have shown to introduce more intermittencies than the rest of the grid can absorb economically. Energy efficiency (EE) and demand response (DR) measures have the ability to mitigate these problems by reducing building energy consumption, reducing cost of electricity, and bolstering grid stability. EE refers to the static control of load to achieve a net demand reduction. DR refers to the dynamic adjustment of load prompted by energy supply or price.

This project aims to assess the potential for EE and DR, and characterize the controllability of load demand of the UCI campus community.

GOALS

- Understand the end-use make-up of building loads and identify opportunities for energy efficiency (EE) improvements and demand response (DR) implementations
- Establish metrics for evaluation of EE and DR measures
- Develop models to simulate EE and DR measures and characterize their performance

RESULTS

Metrics established for DR measures are shown below. Response time, reduction magnitude achieved, duration of sustained response, and recovery behavior are interrelated with all contributing to some adverse impact on the occupant. The metric for EE measures is only the reduction magnitude achieved since EE measures are non-dynamical and must not have occupant impacts.

RESULTS (continued)

Models of buildings on the UCI campus have been created on the eQUEST building simulation tool and verified with metered building data. Preliminary results indicate the most substantial DR reduction is achievable via fan power reduction of the heating, ventilation, and air conditioning (HVAC) fan when zone temperatures of the building are allowed to float to 80 degrees F. These results will be verified with empirical testing on the modeled buildings.

Evaluation metrics for demand response measures.

Average results of DR simulations in eQUEST.

RECENT PUBLICATIONS/PAPERS


PERSONNEL

Graduate Students: Hong Hoa Do
Undergraduate Students: Martin Chang
Staff: Tim Brown
Principal Investigator(s): Scott Samuelsen