DYNAMIC MODELING PROTON EXCHANGE MEMBRANE FUEL CELL

OVERVIEW

Current/Completed Plug Power activities list

- Testing of natural gas SU-1
- Display of natural gas SU-1 (plexi-glass panels)
- Testing of natural gas GenSys-5
- Use of GenCore to test reformate quality effects using a novel cyclic autothermal reformer from GE
- Use of GenCore to investigate effects of fuel quality and dynamic changes in fuel composition and flow on performance
- Dynamic simulation of the GenSys and GenCore systems
- Support of sales team when asked (show operating units, discuss technology, objective perspective)
- Worked as partner to garner SCAQMD funding for fuel cell testing

GenCore system is sensitive to diluents

 As built design includes exhaust gas recirculation and a vent flow for removing small amounts of fuel contaminants

UCI System Modifications:

Anode exhaust gas recirculation (EGR) system eliminated

- Dead-headed anode was transformed to an anode with a straight-through flow path
 - o Mechanism for venting only 0.05% impurities not sufficient
 - Leads to a buildup of impurities in the anode
- Humidification was added to simulated fuel stream to compensate for removal of EGR
- Functionality of the modified GenCore Fuel Cell system was tested
 - o H₂ operation repeated to determine baseline operability with modifications
 - o Diluents (CO₂, CO, CH₄) added to H₂ stream as "proof of concept" of straight-through anode
 - o Flow rates were determined based on 33-50% utilization for all operating condition

GenCore Testing with ACR

Typical reformate compositions produced by ACR approach:		
	Low	High
Hydrogen	70%	100%
CO2	25%	30%
СО	0 ppm	10 ppm
CH4	0%	2.40%

Reformate composition of initial tests:

	%	Flow
Hydrogen	74%	70 slpm
СО	10 ppm	0.65 sccm
CH4	1%	0.937 slpm
CO2	balance	

Summary – GenCore Testing with ACR

- Unmodified GenCore Fuel Cell system cannot be operated on a fuel with an impurity level over the design limit (99.95% H2)
- Modified GenCore Fuel Cell system with straight-through anode can be operated on reformate fuels
- CO Poisoning effect on fuel cell anode is still a vital issue to be addressed and investigated
 - But measured performance with 10 ppm < [CO] < 100ppm showed no long-term degraded performance
- Integration of GenCore Fuel Cell system with the GEGR ACR system was a success (although reformer never met desired fuel specifications)

Dynamic Model of GenSys System

PEMFC stack model - Quasi 3-D model

Heat Transfer network in quasi 3-D PEMFC model

Heat Transfer Network in Quasi 3-D PEMFC model

Water Dynamics - Quasi 3-D PEMFC model

Model comparison to Seoul National Univ. PEMFC data

Plug Power GenSys-5 PEMFC System Model - data comparison

Plug Power GenSys-5 PEMFC System Model – Voltage Transient comparison

DC-Voltage

Plug Power GenSys-5 PEMFC System Model – Stack Voltage Transient comparison

Plug Power GenSys-5 PEMFC System Model – Stack DC Efficiency comparison

Plug Power GenSys-5 PEMFC System Model – CPOx Reactor Temperature comparison

PERSONNEL

Investigators: Prof. Jack Brouwer, UCI
Prof. Kyoung Doug Min, Seoul National University
Students: Fabian Mueller, Graduate Student Researcher, UCI
Sang Kyu Kang, Graduate Student Researcher, Seoul National University

SPONSORS

Plug Power, Incorporated, Latham, New York U.S. Department of Defense Fuel Cell Program National Fuel Cell Research Center