

Advanced Power and Energy Program University of California, Irvine Professor Scott Samuelsen (PI) Dr. Kate Forrest (PM)

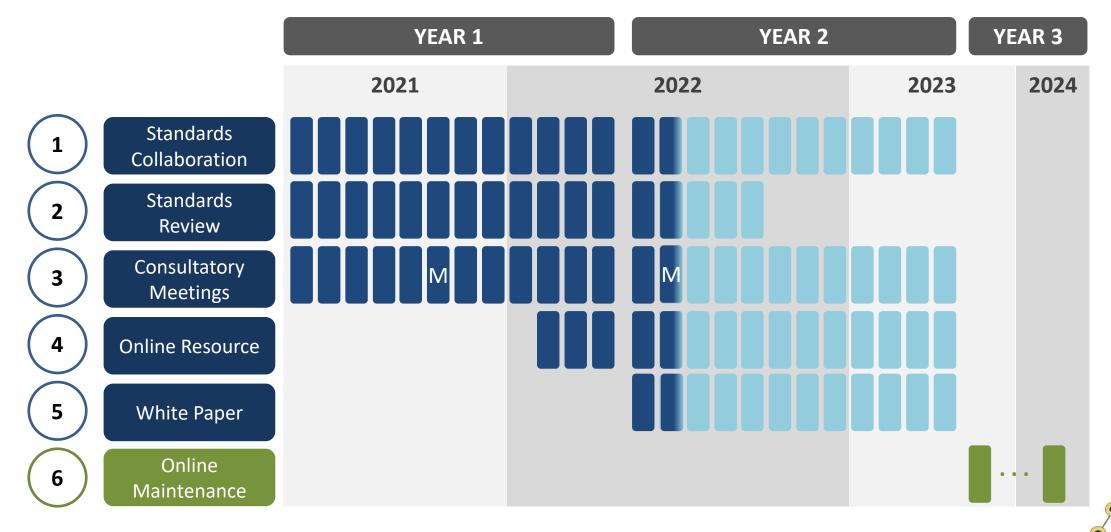
June 14, 2022

Meeting Agenda

- Project Goal, Objectives, and Timeline
- Consultatory Meeting #1 Summary
- Consultatory Meeting #2
 - Meeting Goals
 - <u>Status</u> of the Initiative
 - Feedback
 - Discussion Questions
 - Open Q&A
- Next Steps for the Second Year

Project Overview – Project Goal

- UCI is conducting a two-year CARB contract to assess:
 - Status of standards for
 - Charging Battery Electric MHD Vehicles
 - Fueling Hydrogen Fuel Cell Electric MHD Vehicles
- Overall Goal
 - Assure standards are evolving to proactively enable the zero-emission MHDV market
 - Identify specific government actions that may facilitate timely evolution
- Project Began 1 May 2021
- Consultatory Group Meetings
 - Two a Year
 - This is meeting #2
 - Summarize UCI findings to date, obtain input and guidance



Project Overview - Objectives

Standards Organizations Collaboration	Collaborate with and utilize standards organizations to monitor developments, track activity, and inform the analyses conducted in other tasks.
Standards Review	Assess the status of standardization and associated activities within the context of State goals.
Consultatory Group Meetings	Convene a program consultatory group to create a public forum for key stakeholders to facilitate relationships and discussion on MH-ZEV infrastructure standardization
Online Informational Resource	Publish an informational resource online for standardization processes, for government and stakeholders to understand the role and status of standardization
White Paper	Provide a White Paper on standardization status, outlook, and priorities, as well as policy recommendations
© Advanced Power and Energy Program 2022	4/44

Project Overview - Timeline

2 Years + 1 Year online maintenance: 1 May 2021 to 30 April 2024

Meeting Agenda

- Project Goal, Objectives, and Timeline
- Consultatory Meeting #1 Summary
- Consultatory Meeting #2
 - Meeting Goals
 - Status of the Initiative
 - Feedback
 - Discussion Questions
 - Open Q&A
- Next Steps for the Second Year

Consultatory Meeting #1 Summary

October 19, 2021

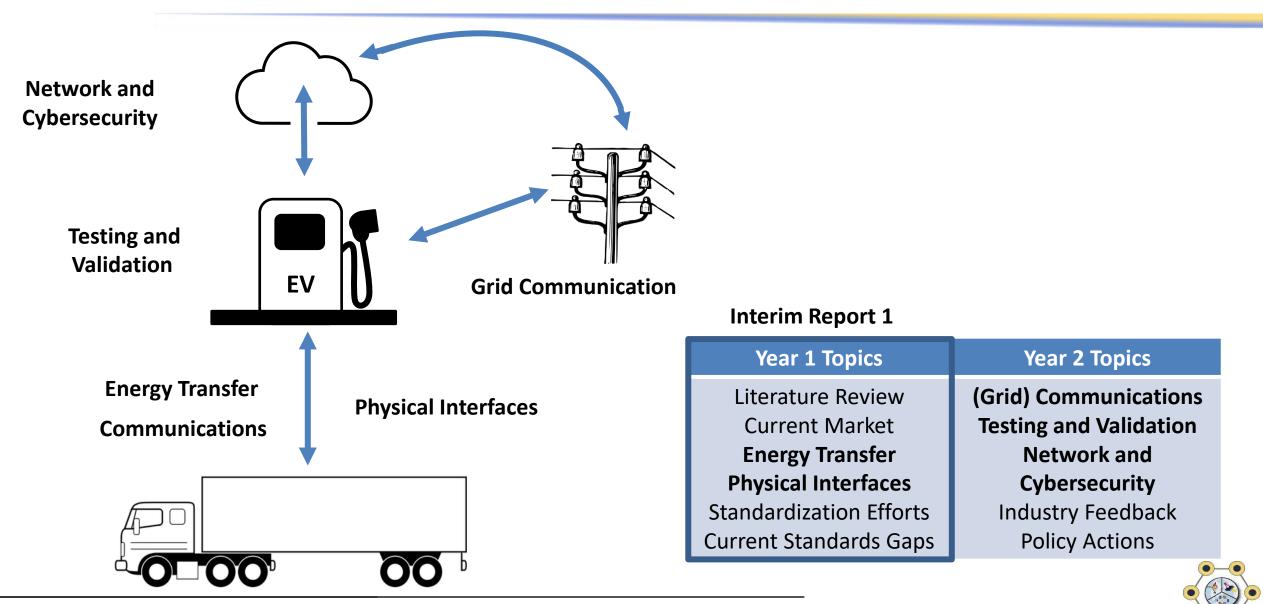
- Overview of Project Motivation, Goal, and Standards Scope
- Current MH-ZEV Market
- Current Infrastructure Standardization Efforts
- Potential Government Actions

 Consultatory Meeting #1 slides available online: <u>https://www.apep.uci.edu/MHDV_Protocol_Comment.html</u>

Meeting Agenda

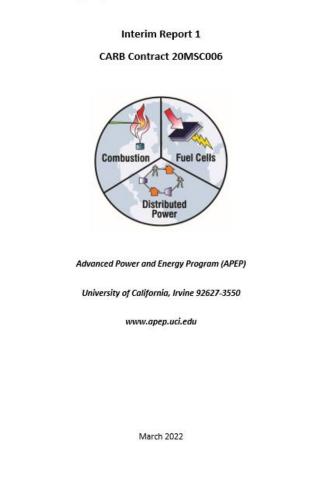
- Project Goal, Objectives, and Timeline
- Consultatory Meeting #1 Summary
- Consultatory Meeting #2
 - Meeting Goals
 - Status of the Initiative
 - Feedback
 - Discussion Questions
 - Open Q&A
- Next Steps for the Second Year

Meeting Goals


- Present initial findings on:
 - The status for standardizing charging on-road MHD battery electric vehicles
 - Early insights into market-driven consensus
 - Active initiatives in the development of standards
 - State actions (if any) that might be useful to facilitate the process, such as staffing, grants, sponsorship, membership, etc...
- Solicit feedback on the UCI assessment

Meeting Agenda

- Project Goal, Objectives, and Timeline
- Consultatory Meeting #1 Summary
- Consultatory Meeting #2
 - Meeting Goals
 - <u>Status</u> of the Initiative
 - Feedback
 - Discussion Questions
 - Open Q&A
- Next Steps for the Second Year



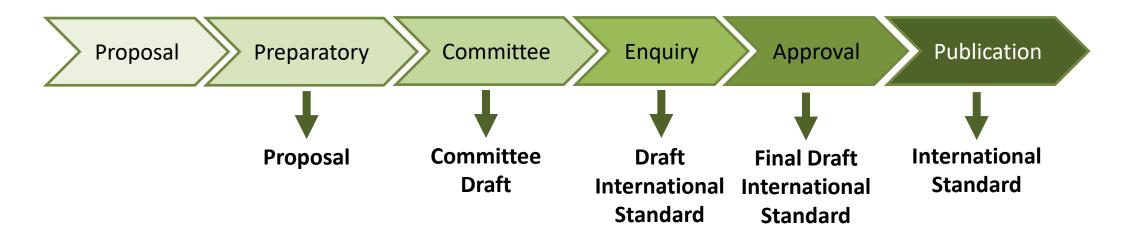
Status: Standards within Project Scope

Status: Interim Report 1

Medium- and Heavy-Duty Zero-Emission Vehicle Fueling and Charging Standardization Assessment

Table of Contents

List of Figures						
List of Tables						
1. Introduction5						
2. Background7						
2.1 Lessons Learned from Early Adopters and Factors affecting Deployment7						
2.2 Current Funding Programs Relevant to Medium- and Heavy-Duty Zero-Emission						
Vehicles and Infrastructure8						
3. Standards Organizations11						
4. Assessment Methodology						
5. Battery Electric Vehicle Charging14						
5.1 Charging Protocols14						
5.2 On-going Standards Development20						
5.3 Current Gaps and Medium- and Heavy-Duty Vehicle-Specific Needs21						
5.4 BEV Charging Analysis Next Steps23						
6. Fuel Cell Electric Vehicle Hydrogen Refueling						
6.1 Fueling Protocols						
6.2 On-going Standards Development						
6.3 Current Gaps and Medium- and Heavy-Duty Vehicle-Specific Needs						
6.4 FCEV Hydrogen Refueling Analysis Next Steps						
7. Industry and Government Stakeholder Engagement						
References						
Appendix41						

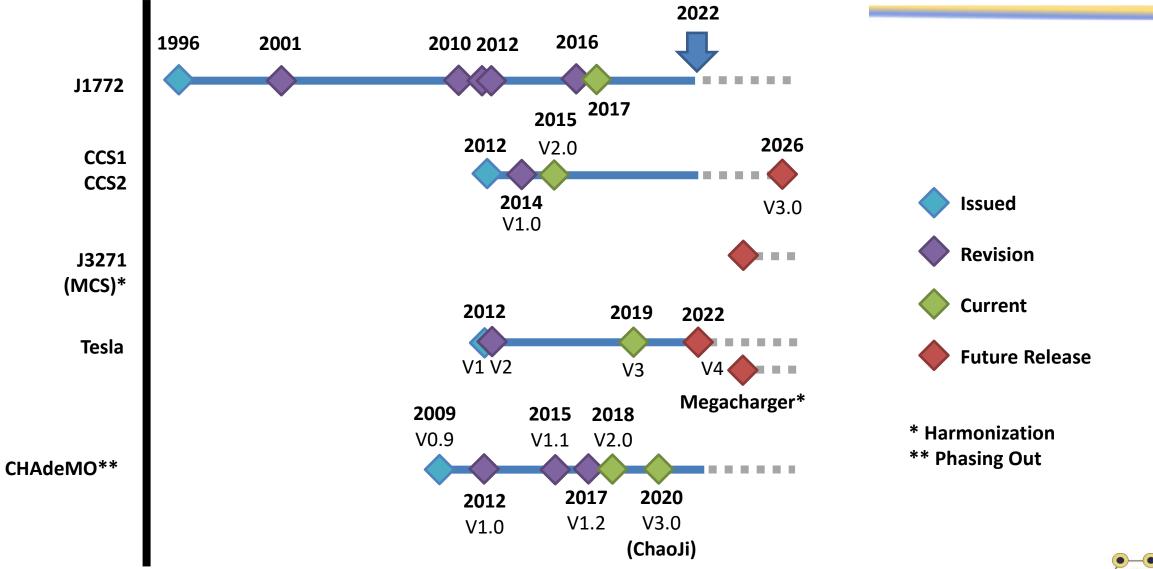

Status: Standards Organizations Within Scope

- SAE (Society of Automotive Engineers) International
- International Organization for Standardization (ISO)
- International Electrotechnical Commission (IEC)
- Institute of Electrical and Electronics Engineers (IEEE)
- American National Standards Institute (ANSI)
- ASTM (American Society for Testing and Materials) International
- National Fire Protection Association (NFPA)
- European Committee for Standardization (CEN)
- European Committee for Electrotechnical Standardization (CEN-CENELEC)
- European Telecommunications Standards Institute (ETSI)

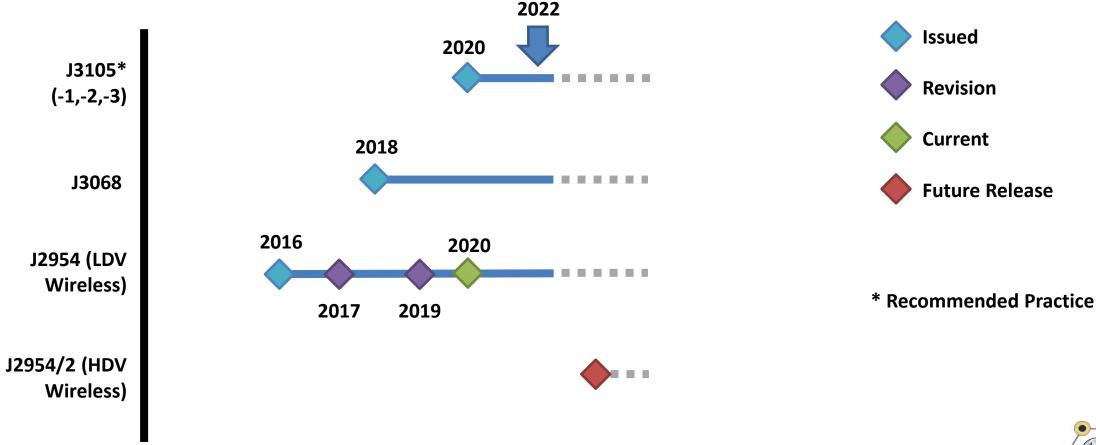
13/44

Status: Standards Document Types and Stages

ISO Stages and Documents



SAE Document Types


Status: Standards Timeline and Trajectories

Status: Standards Timeline and Trajectories

Additional Standards for Consideration

© Advanced Power and Energy Program 2022

Status: Medium- and Heavy-Duty Charging Connectors

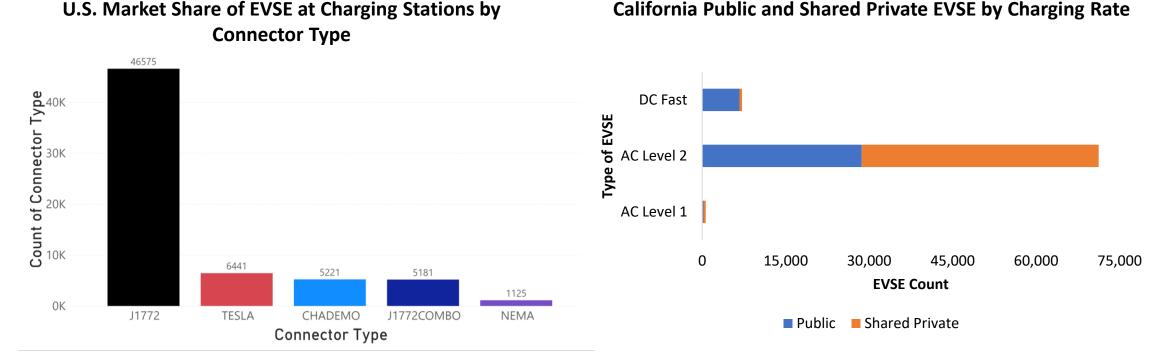
	Current Standards							In Development
Connector	GB/T 20234.2	IEC 60309	IEC 62196.2 (Type 2 - Mennekes)	IEC 62196.2 (Type 3 - Scame)	SAE J1772 (Type 1)	SAE J3068	SAE J2954	SAE J2954-2
Current Type	AC	AC	AC1	AC	AC/DC ¹	AC	Inductive	Inductive
Power (kW)	14	10	Up to 33-43	Туре ЗА – 19.2 Туре ЗС – 43.6	AC: Up to 19.2 DC: Lvl 1- 80 kW Lvl 2 – 400 kW	Up to 133-166 kW	3.7, 7.7, 11, & 22 kW	Up to 500 kW
Voltage (V)	250/440	230	400/480 3/1 φ	Type 3A – 230/240 Type 3C – 400	120/240 1ф, 208 3ф	480/600	N/A	N/A
Current (A)	16/32 (Rated 63)	15	63/70 3/1ф (Rated 300)	Туре ЗА – 32 1ф Туре ЗС – 63 3ф	80	160 Зф (Rated 300)	N/A	N/A
V2X						✓		
Markets	China	India	Europe	Europe (Now Deprecated)	North America, Japan	North America	North America	North America

AC and Inductive EVSE Connector Market

¹DC mode only implemented in Europe at Tesla Supercharger stations

Status: Medium- and Heavy-Duty Charging Connectors

DC EVSE Connector Market


	Current Standards						In Development	
Connector	CHAdeMO	GB/T 20234.3	CCS1	CCS2	Tesla (Proprietary)	SAE J3105 ¹	SAE J3271 (MCS)	ChaoJi
Current Type	DC	DC	AC/DC	AC/DC	AC/DC	DC	DC	DC
Power (kW)	6 - 400	187.5	Up to 350, Planned 450	Up to 350, Planned 450	AC: up to 19.2 DC: 250, 350 Planned	L1: up to 350 kW L2: up to 1.2 MW	Up to 3.75 MW	50-900 kW (Expandable)
Voltage (V)	1000	750	920, Planned 1000	920, Planned 1000	AC: 240 DC: 1000	Up to 1000	1250	1500
Current (A)	400	250	380 (Rated 500)	380 (Rated 500)	AC: 80A DC: 250, 350 Planned	Up to 1200	3,000	600
V2X	✓		WIP ²	WIP ²			✓	✓
Markets	Japan, Sporadic	China	North America	Europe	North America	North America, Europe	North America, Europe	China, Japan

¹Recommended practice; ² WIP = Work in Progress

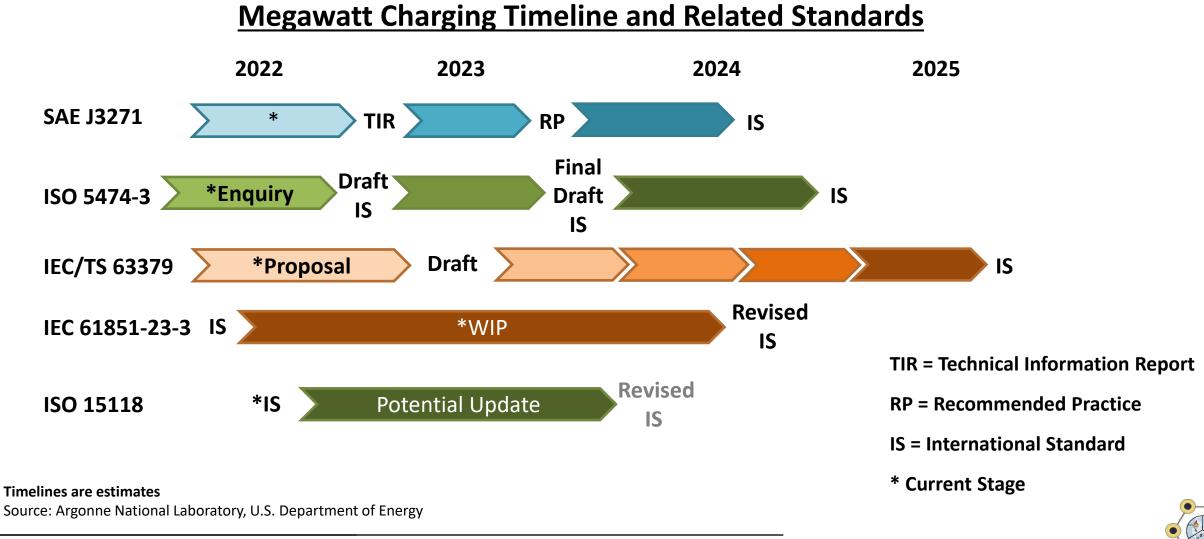
Status: U.S. Vehicle Markets for Charging Connectors

- EVSE connector types driven by light-duty market
- Within the U.S., LDV DC market is a mixture of CCS, CHAdeMO, and Tesla

Data Extracted from US DOE Alternative Fueling Station Locator Oct 6th, 2021. * Some stations offer more than one connector type and are counted multiple times.

Source: California Energy Commission (2022). Electric Vehicle Chargers in California. Data last updated January 31, 2022. Retrieved February 28, 2022, from https://www.energy.ca.gov/zevstats

Status: U.S. Vehicle Markets for Charging Connectors


- Charger selection dependent on:
 - Vehicle demand and EVSE cost
 - Public versus private stations: Fleets with on-site charging may still desire some public access for resiliency

	Vehicle Category							
Connector Type	Light-Duty	Bus	Class 3-5 Trucks	Class 6-7 Trucks	Class 8 Trucks			
J1772/CCS1	✓	✓	✓	✓	~			
J3068		✓	✓	✓	✓			
Tesla	✓				*			
CHAdeMO	۸	^	^					
J3105		✓	*	*	*			
J2954	+*							
J2954-2 (Wireless)		*	*	*	*			
J3271 (MCS)		*	*	*	*			

^Phasing Out*Potential Future Market+ Recently released

Status: Standards Pathways and Timelines

Status: Current Gaps

Topic areas directly related to codes and standards

- Charging rates
- Reliability
- Cybersecurity
- Automated charging
- Payment systems

• Topic areas adjacent to codes and standards

- Station design
- Public charging network buildout

Charging Rates

- Lack of higher power charging
 - <u>Type of Gap:</u> Standards, Technology
 - MH-ZEV Gap Impact: Long charging times, possibly reduced vehicle availability
 - Recent Activities:
 - Standards
 - CCS planned update to 450 kW
 - Vehicle-side updates
 - Megawatt Charging System (MCS): CharIN, SAE J3271, Up to 3.75 MW
 - Battery Swapping
 - Alternative to higher charging rates to vehicles
 - <u>Goal:</u> Faster charging, vehicle operational parity (where feasible)

23/44

Reliability

- Currently, lower reliability than desired/needed*
 - <u>Type of Gap</u>: Standards, Communication Protocol Implementation
 - MH-ZEV Gap Impact: Failed charging sessions, possibly reduced vehicle availability
 - Recent Activities:
 - Interoperability Testing
 - Increase compatibility between products in diverse market
 - CharIN: develop a more standardized approach for testing
 - Standards
 - CCS & ISO 15118
 - MCS (SAE J3271): Review communications protocols and target needs for MCS
 - WIP J3105/2
 - WIP J2954/2
 - <u>Goals</u>: Improved error resolution and overall higher reliability (99.9...%)

*30-40% of charging sessions fail, Michael Paras, SAE International EV Charging Infrastructure Conference 2022

Cybersecurity

- Risk for charging session disruption, tampering, and data insecurity (payment, fleet data)
 - <u>Type of Gap:</u> Standards, Communications Protocols
 - MH-ZEV Gap Impact: Risk for charging disruptions and data breaches
 - <u>Recent Activities:</u>
 - Standards/Protocol updates
 - ISO 15118-20, OCPP added Public Key Infrastructure (PKI) encryption (V1.8)
 - Best Practices
 - No exposed ports to access software/hardware, no standardized default passwords
 - Research
 - U.S. DOE Project (Concluded 2021): Securing Vehicle Charging Infrastructure lack of encryption across inter-module communications
 - ElaadNL and the European Network for Cybersecurity (ENCS): set of cybersecurity requirements for charging stations
 - <u>Goals</u>: Improved station uptime and security

Automated Charging (I/II)

- Automated charging devices
 - <u>Type of Gap:</u> Standards, Technology
 - MH-ZEV Gap Impact: High power systems can be safety risk
 - Recent Activities:
 - Standards
 - ISO 15118-20, ACDs components supporting the automatic connection and disconnection process for conductive energy transfer between an EV and an EV supply equipment
 - SAE J3105
 - Industry development
 - Devices that utilize a combination of existing standards and proprietary hardware/software
 - Goal: Improved ease of use

26/44

Automated Charging (II/II)

- Automated charging management
 - <u>Type of Gap:</u> Standards
 - <u>MH-ZEV Gap Impact</u>: lack of charging reliability/flexibility resulting in sub-optimal charging performance
 - <u>Recent Activities:</u>
 - Standards
 - ISO 15118-20, Vehicle-to-grid
 - J3271 (MCS), currently reviewing communications protocols to identify needs
 - Goals: Greater charging reliability and flexibility

Payment Systems

- Lack of standardization is a current barrier to public charging access/use
 - <u>Type of Gap:</u> Codes and Standards, Policy
 - <u>MH-ZEV Impact</u>: Use of a variety of subscription plans and payment systems can limit customer access and use
 - Current CA Law: SB 454 Electric Vehicle Charging Stations Open Access Act (2013)
 - Encompasses transparency and consumer choice requirements, including station location, pricing, and interoperable payment methods across networks

– <u>Recent Activities:</u>

- CARB
 - Standards technology review report released in February 2022: real and perceived barriers exist, including interoperability, payment methods, and membership requirements
- CharlN
 - Position paper on payment systems
- <u>Goals</u>: Ease of use and broad utilization of a public charging network

Status: Current Gaps

Topic areas directly related to codes and standards

- Charging rates
- Reliability
- Cybersecurity
- Automated charging
- Payment systems

• <u>Topic areas adjacent to codes and standards</u>

- Station design
- Public charging network buildout

Status: Topic Areas Adjacent to Codes and Standards

Station design:

- Need to consider different vehicle classes and duty cycles
 - Number and type of chargers, layout, ingress, egress, mix of vehicles charging, etc.

Source: CALSTART 2021 Taking Commercial Fleet Electrification To Scale: Financing Barriers and Solutions

Status: Topic Areas Adjacent to Codes and Standards

Station design:

- Need to consider different vehicle classes and duty cycles
 - Number and type of chargers, layout, ingress, egress, mix of vehicles charging, etc.
- Selecting charging power often an economic decision
 - Significant cost difference between 19.2 kW and 50 kW, 150 kW and 350 kW

Status: Topic Areas Adjacent to Codes and Standards

Public charging network buildout

• Public stations can support fleets by supplying fleets without on-site charging and supplementing fleets that have on-site charging

	Vehicle Category						
Connector Type	Light-Duty	Bus	Class 3-5 Trucks	Class 6-7 Trucks	Class 8 Trucks		
J1772/CCS 1	\checkmark	\checkmark	✓	\checkmark	✓		
J3068		\checkmark	✓	\checkmark	✓		
Tesla	✓				*		
CHAdeMO	٨	Λ	^				
J3105		\checkmark	*	*	*		
J2954	+*						
J2954-2 (Wireless)		*	*	*	*		
J3271 (MCS)		*	*	*	*		

Options for MHDV Public Stations?

^Phasing Out*Potential Future Market+ Recently released

Status: Summary of Initial Findings

- Initial Consensus
 - Harmonized approach
 - Reduce market heterogeneity of standards
 - consider charging rate and cost
 - Improved reliability
 - Faster charging rates
 - A range of charging rates are needed to meet MHDV operational needs
 - Level 2 charging may be sufficient for some vehicle classes and applications
 - DC fast charging up to megawatt charging can provide greater operational flexibility
 - Public versus fleet charging stations
 - Fleets may opt for modular approach for expanding infrastructure in pace with MH-ZEVs
 - Public network may serve as backbone for fleets, providing resiliency
 - Standardized charging infrastructure can support broad use of a public charging network

Meeting Agenda

- Project Goal, Objectives, and Timeline
- Consultatory Meeting #1 Summary
- Consultatory Meeting #2
 - Meeting Goals
 - <u>Status</u> of the Initiative
 - Feedback
 - Discussion Questions
 - Open Q&A
- Next Steps for the Second Year

Discussion Questions (I/III)

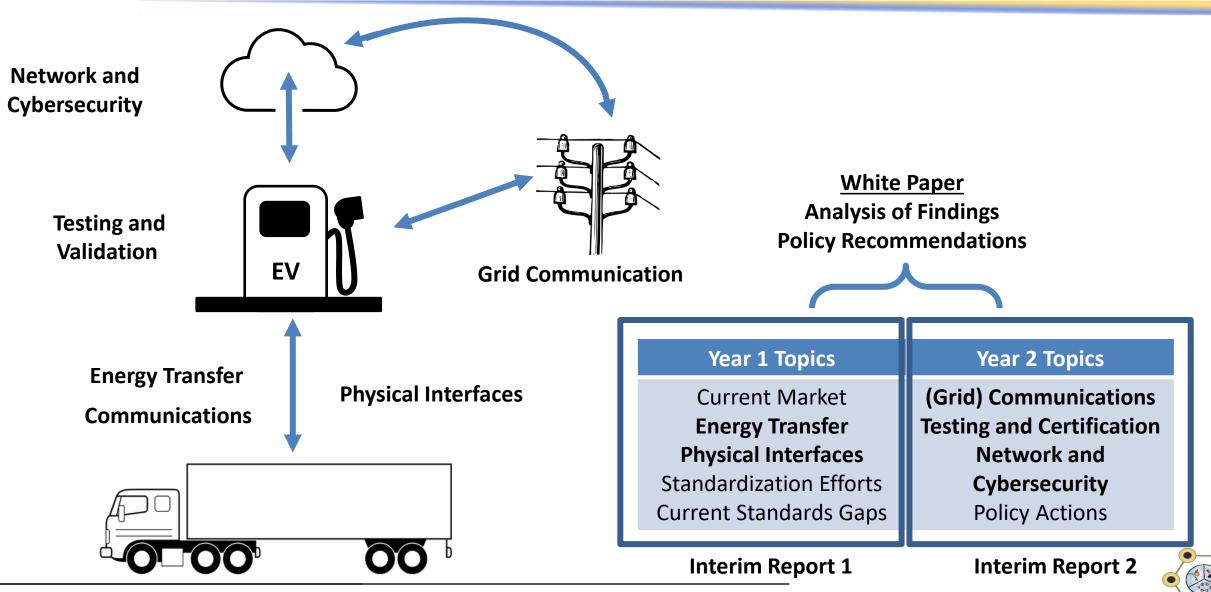
1. What additional charging infrastructure standards gaps and/or performance gaps need to be addressed to support large-scale deployment for MH-ZEVs?

- 2. What specifications are appropriate to guide those applying for charging station grant awards?
 - Are there any ambiguity or issues with current funding solicitations?
 - Listing standards/certification/testing requirements?
 - Referencing a TIR (Technical Information Report) pre-standard
 - Guidance for Demonstrations

Additional Discussion Questions (III/III)

- 1. Should public funding requirements vary for fleet (private) versus public charging stations?
 - Codes and standards
 - LDV and HDV shared access
- 2. What are the current limitations holding back the widescale deployment of a MHDV charging network?

3. Are there additional topics/issues that you would like to see in the second interim report?



Meeting Agenda

- Project Goal, Objectives, and Timeline
- Consultatory Meeting #1 Summary
- Consultatory Meeting #2
 - Meeting Goals
 - <u>Status</u> of the Initiative
 - Feedback
 - Discussion Questions
 - Open Q&A
- Next Steps for the Second Year

Next Steps

Next Steps

- Finalize list of *current* federal and state government actions related to supporting the standardization of MH-ZEV infrastructure deployment
- Finalize list of *possible* federal and state government actions related to supporting the standardization of MH-ZEV infrastructure deployment

What actions should the state and/or federal government take to support standardization and accelerate the MH-ZEV infrastructure network buildout?

Next Steps

- Continue examining current standards and technologies development
 - International efforts, Optimization within existing standards, Testing, Communications protocols
 - Timeline: September 2022
- Engage key stakeholders and integrate stakeholder input
 - Drive towards consensus
- Further refining of policy actions and timeline
 - Specificity, Timing
 - Timeline: White paper January 2023

41/44

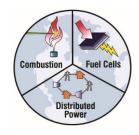
Meeting Agenda

- Project Goal, Objectives, and Timeline
- Consultatory Meeting #1 Summary
- Consultatory Meeting #2
 - Meeting Goals
 - <u>Status</u> of the Initiative
 - Feedback
 - Discussion Questions
 - Open Q&A
- Next Steps for the Second Year

Project Final Product – White Paper

• White Paper Goals:

- Synthesize the background, research, interviews, and findings of the project
- Identify standardization gaps, pinch points, and priority areas that are critical for the market success of MH-ZEVs within the State
- present policy recommendations and high-level guidance based on the assessments conducted
- propose additional assessments necessary to facilitate MH-ZEV adoption and protect investments in a zero-emission transportation future
- Draft White Paper January 2023



43/44

Written Comments

http://www.apep.uci.edu/MHDV_Protocol_Comment.html

Advanced Power and Energy Program University of California, Irvine Professor Scott Samuelsen (PI) Dr. Kate Forrest (PM)

June 14, 2022