
Medium- and Heavy-Duty Zero-Emission Vehicle Standardization Assessment: Battery Electric Charging

October 19, 2021

Advanced Power and Energy Program University of California, Irvine Professor Scott Samuelsen (PI) Dr. Kate Forrest (PM)

Introduction

- UCI is conducting a two-year CARB contract to assess:
 - Status of standards for
 - Charging Battery Electric MHD Vehicles
 - Fueling Hydrogen Fuel Cell Electric MHD Vehicles
- Overall Goal
 - Assure standards are evolving to proactively enable the zero-emission MHDV market
 - Identify any government actions that may facilitate an orderly and timely evolution
- Project Began 1 May 2021
- Consultatory Group Meetings
 - Two a Year
 - This is meeting #1
 - Summarize UCI findings to date, obtain input and guidance

Contract

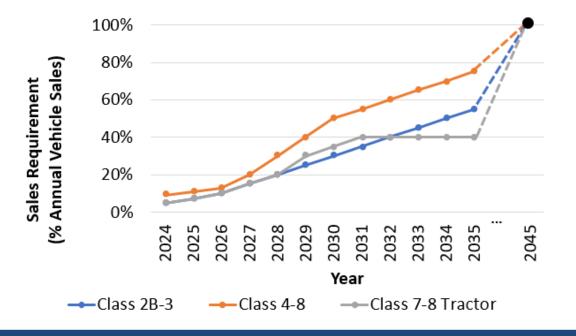
- California Air Resources Board
- Start Date: 1 May 2021
- Duration: 2 years
- Goal:

Assess role of policy mechanisms to guide medium and heavy-duty battery electric <u>vehicle</u> <u>charging</u> and fuel cell electric vehicle <u>hydrogen fueling</u> standards to:

- Streamline medium and heavy-duty transformation
- Reduce market uncertainty and complexity
- Protect State investments, and
- Accelerate deployment

Meeting Agenda

- Meeting Goals
- Project Overview
- MHDV Battery Electric Charging Infrastructure Standards
 - Existing Standards and Deployment
 - Standards in Development
 - Current Demonstrations and Commercial Deployments
- State Roles
 - Current State Initiatives
 - Examples of Potential State Actions
 - Short Term Approach to Standardization
- Next Steps
- Comments and Discussion


Meeting Goals

- Present initial findings on:
 - The status for standardizing charging MHD battery electric vehicles and fueling hydrogen fuel cell electric vehicles
 - Early insights into market-driven consensus
 - Active initiatives in the development of standards
 - State actions (if any) that might be useful to facilitate the process
- Solicit feedback on the UCI assessment

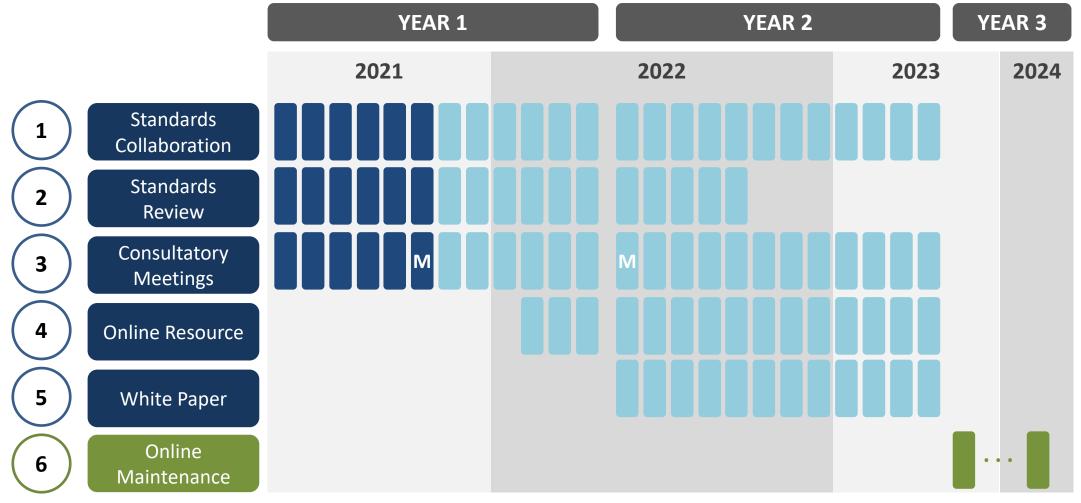
Project Overview

Motivation and Background

- California emissions reduction goals for the medium- and heavy-duty vehicle (MHDV) sectors:
 - Innovative Clean Transit regulation mandates 100 percent zero-emission public bus fleets by 2040
 - Advanced Clean Trucks regulation mandates increasing sales of zero-emission MHDVs thru 2035
 - Executive Order (E.O.) N-79-20 directs that all MHDV be zero-emission by 2045, where feasible

Successful adoption requires a rapid roll-out of reliable and interoperable charging infrastructure

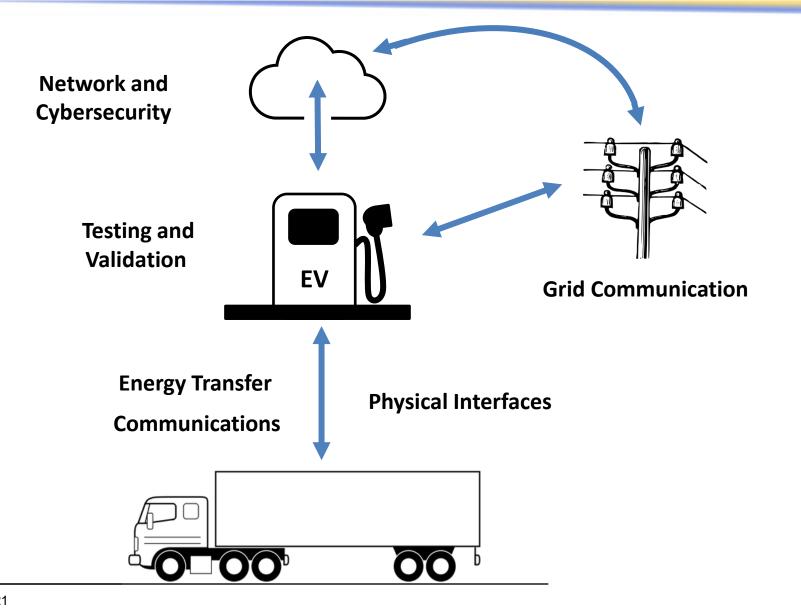
Motivation and Background

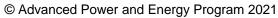

- 2021 Assembly Bill 2127 Electric Vehicle Charging Infrastructure Assessment
 - An additional 157,000 chargers are needed to support 180,000 MHDs anticipated for 2030
 - "Prioritize standardized charger connectors and, for networked charging, prioritize hardware capable of standardized communications protocols"
 - Lack of standardization reduces consumer confidence and ease of use
 - Risks stranded assets as market evolves

Project Objectives

Standards Organizations Collaboration	Collaborate with and utilize standards organizations to monitor developments, track activity, and inform the analyses conducted in other tasks.
Standards Review	Assess the status of standardization and associated activities within the context of State goals.
Consultatory Group Meetings	Convene a program consultatory group to create a public forum for key stakeholders to facilitate relationships and discussion on MH-ZEV standardization
Online Informational Resource	Publish an informational resource online for standardization processes, for government and stakeholders to understand the role and status of standardization
White Paper	Provide a White Paper on standardization status, outlook, and priorities, as well as policy recommendations
ed Power and Energy Program 2021	9/34

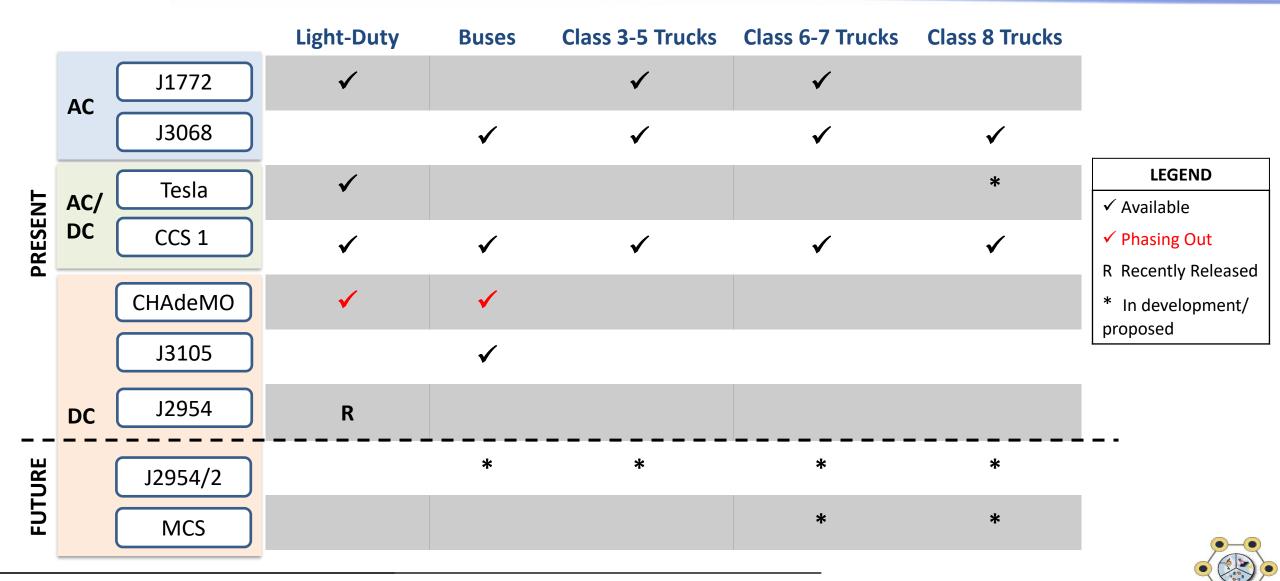
Schedule


2 Years + 1 Year online maintenance: 1 May 2021 to 30 April 2024

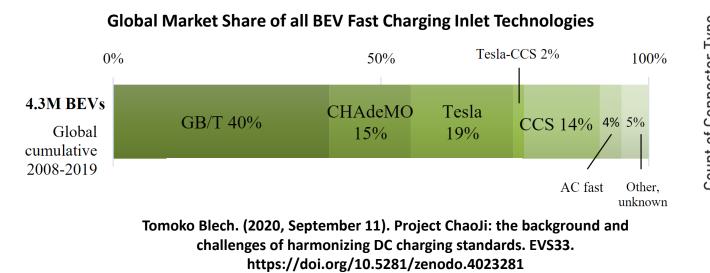


Battery Electric MHDV Charging Infrastructure Standards

Standards within Project Scope



Medium- and Heavy-Duty Charging Connectors


Diverse	Diverse Global EVSE Connector Market										
Connector	CHAdeMO	GB/T	Mennekes (IEC 62196)	NA Mennekes (J3068)	J1772	CCS1	CCS2	Tesla	MCS	ChaoJi	
AC/DC	DC	AC/DC	AC	AC	AC	AC/DC	AC/DC	DC	DC	DC	
Power	6 – 400 kW	14 kW, 187.5 kW	Up to 33- 43 kW	Up to 133- 166 kW	Up to 19.2 kW	Up to 350-500 kW	Up to 350-500 kW	250 kW, 350 kW Planned	Up to 3.75 MW	50-900 kW	
Voltage	1000V	250/440VAC, 750VDC	400/480V 3/1ф	480/600V	120V 1ф, 208-240V 3ф	IP: 920V Planned: 1000V	IP: 920V Planned: 1000V	1000V	1250 V	1500 V	
Max Current	400A	16/32A AC (Rated: 63A), 250A DC	IP: 70/63A 1/3φ Rated: 300 A	IP: 160A 3ф Rated: 300A	80A	IP: 380 A Rated: 500A	IP: 380 A Rated: 500A	250A	3,000 A	600 A	
V2X	*			*					*	*	
Markets	Japan	China	Europe	North America	North America, Japan	North America	Europe	North America	North America, Europe	China and Japan	
dvanced Power and Energy Program 2021											

Overview of Charging Protocols in U.S. Market

Current EVSE Market

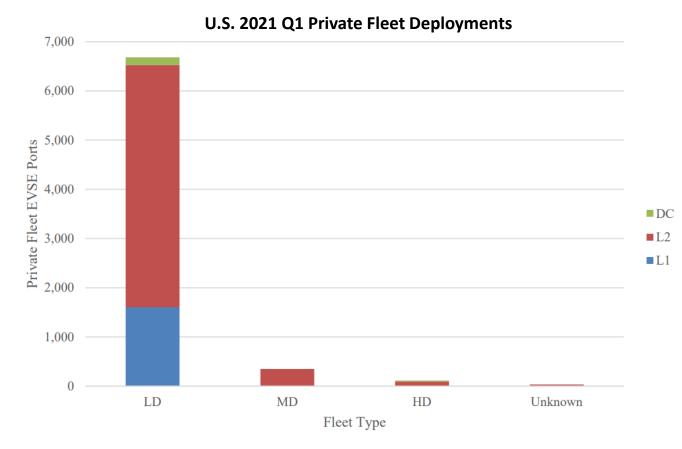
- EVSE connector types driven by light-duty market
- Within the U.S., LDV DC market is a mixture of CCS, CHAdeMO, and Tesla

46575 40K 20K 0K J1772 TESLA CHADEMO J1772COMBO NEMA Connector Type

U.S. Market Share of EVSE Stations by Connector Type*

Data Extracted from US DOE Alternative Fueling Station Locator Oct 6th, 2021

* Some stations offer more than one connector type and are counted multiple times



(2021) NREL/TP-5400-80684

© Advanced Power and Energy Program 2021

Current EVSE Market

• Currently private fleet-based MHD deployments mostly level 2, small fraction DC

Brown, Schayowitz, and Klotz (2021) NREL/TP-5400-80684

© Advanced Power and Energy Program 2021

Current Market

As of 2020, California transit agencies have purchased 654 zero-emission buses

10 New Flyer Xcelsior CHARGE Buses Ordered by OCTA Photo: OCTA

20 BYD Electric Buses In Use at UCI Photo: UCI

Proterra Electric Buses Previously in Use by Foothill Transit Photo: NREL

Current Market

Frito Lay Operates about 270 Class 5 Smith Newton Delivery Vans Photo: NREL

IKEA Operates ~50 Lightning eMotors Electric Class 4 Trucks and Workhorse C1000 Trucks Photo: IKEA

Current/Planned Market

Photo: Arrival

UPS rolling out last-mile delivery vans from Arrival Target: 10,000 by 2024, option for 10,000 more

Anheuser-Busch Deployed 21 BYD Class 8 Trucks Targets: Cut Fleet GHG Emissions 25% by 2025

Photo: CNBC

Amazon rolling out last-mile delivery vans from Rivian

Targets: 10,000 vans by 2022, 100,000 vans by 2030

Photo: BYD

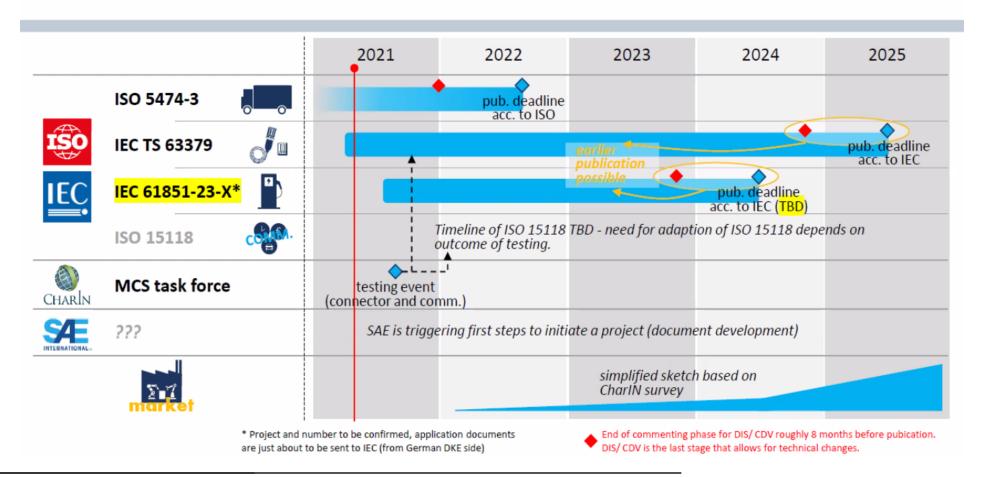
Current Standardization Efforts

(1) Megawatt Charging System

(2) ChaoJi

(3) SAE

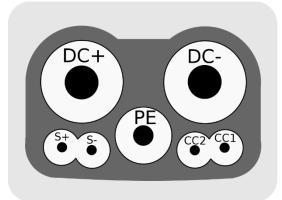
Megawatt Charging System (MCS)


- CharIN developing a new DCFC standard rated for up to 3.75 MW (1250VDC, 3000A)
 - Intended to serve the needs of various vehicle types, similar to CCS
 - Use of current infrastructure in place for CCS to serve lower power classes for the MCS
 - Use of PLC communications and ISO/IEC 15118
 - Based on CCS architecture
- Proposed Market
 - North American and European Class 6, 7, and 8 commercial vehicles
 - Specifically, those used for long haul transport and those with rigorous duty cycles
- Deployment Status
 - Demonstrations and Testing
 - Current Testing: Air Cooled up to 350A, Liquid Cooled up to 3000A
 - Continuing discussion of details of the standard iterative changes to be implemented
 - Complete the requirements and specification document including the plug geometry by 2022
- Future Applications/Expected Market
 - Automated charging
 - V2X compatible
 - Expand market from commercial vehicles to buses, off road with ability to accept >1MW charge rate

Megawatt Charging System

MCS STANDARDIZATION ROADMAP

Timeline and key milestones of international groups involved in MCS standardization.



© Advanced Power and Energy Program 2021

ChaoJi

- CHAdeMO 3.0, Collaboration between Chinese Electric Council (CEC) and CHAdeMO (Japan) to make a harmonized standard for EV charging
 - Electrically compatible via adapters with GB/T 20234.3 and CHAdeMO 2.0, combo inlets compatible with Type 1, 2, CCS1, and CCS2 are also of interest
 - Rated Power: 350-400 kW available now, 900 kW (600A, 1.5kVDC) expected by 2021, possible expansion to 1.8 MW with additional pins
- Proposed Market
 - China and Japan
- Deployment Status
 - Proposed Timeline (Pre-COVID):
 - Draft Protocol Finalized Q1 2020, with the final specification completed Q1 2021
 - Demonstrations in China and Japan taking place
- Future Applications/Expected Market
 - CHAdeMO and supporting EVSE are manufactured worldwide, totaling over 25,000 different stations in 2017, similar global reach envisioned for ChaoJi
 - CHAdeMO sees the DCFC market converging to a single standard

ChaoJi Vehicle Connector Layout

Source: White Paper of ChaoJi EV Charging Technology - State Grid Corporation of China and China Electricity Council

MCS and ChaoJi Comparison

- Similarities
 - Offers MW, or close to MW level, powered charging and a bridge to a universal standard
- Differences
 - MCS proposed use case is Class 6-8 vehicles, while ChaoJi is intended to be a universal interface for all classes of vehicles
 - CHAdeMO has mentioned the addition of more pins to double the power output to 1.8 MW for special cases
 - MCS proposals have suggested up to 3.75 MW
 - ~4X that of standard ChaoJi connector

SAE Standards Development

- J2954/2 Wireless Power Transfer & Alignment for Heavy Duty Applications
 - Under development
- Updates to existing standards
 - e.g. J3105, J1939
- Future work
 - Megawatt Charging System

Early insights into market-driven Consensus and Gaps

- CCS can meet the charging needs of early markets for battery electric trucks and buses
- Class 8 is a key market for higher charging rates (e.g. MCS)
- New deployments will benefit from backwards compatibility, future proofing
- Vehicle-to-grid use cases beyond school buses is unclear, keep technologies V2G-ready
- While performance is standardized, components are not
- Even with standardization, there's a need for interoperability testing among companies and products

Government Roles

Current State Initiatives for MHD BEV and Infrastructure

• INFRASTRUCTURE FUNDING

- (Light-Duty) California Electric Vehicle Infrastructure Project (CALeVIP) \$149 million
- (Announced) EnergIIZE Commercial Vehicles \$50 million
- Low Carbon Fuel Standard (LCFS)
- Loan Programs, e.g. Electric Vehicle Charging Station Financing Program
- VEHICLE FUNDING
 - California Comeback Plan (Vehicles & Infrastructure) \$3.9 billion
 - Hybrid and Zero-Emission Truck & Bus Voucher Incentive Project (HVIP)–\$25 million for FY20-21
 - Carl Moyer Memorial Air Quality Standards Attainment Program
 - Volkswagen Environmental Mitigation Trust for California
- INTEROPERABILITY TESTING
 - CEC GFO-20-610 Vehicle-Grid Innovation Lab (ViGIL) up to \$2 million
 - **CEC RFP-21-601** Vehicle Interoperability Testing Symposium (VOLTS) \$900,000 to 1 million
 - Support for national laboratory testing programs
- PLANNING
 - CEC GFO-20-601 Blueprints for Medium- and Heavy-Duty Zero-Emission Vehicle Infrastructure
 - Heavy Electric Vehicle Infrastructure Projection tool (HEVI-LOAD)

Potential Short-Term (1-3 Year) State Actions

(1) Guidance: State or Federal Guidance on Charging Protocols

- Recommended Standards/Protocols
- List of Vetted Vendors
- Best Practices

(2) Procurement Requirements

- Required or recommended standards
- Compatibility requirements
- Technical Informational Reports
- List of vetted vendors
- Best practices

Potential Long-Term (5-10 Year) State Actions

(1) **Procurement Requirements**

- Required or recommended standards
- Compatibility requirements
- Technical Informational Reports
- List of vetted vendors
- Best practices

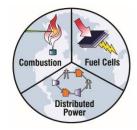
(2) Rulemaking

- Standards Required for Zero-Emission Fueling Infrastructure
 - What would be an appropriate scope?
 - Connector, communications
- Timeline for rulemaking and market compliance
 - Is there a growing market consensus on standards?
 - Timeline for mature MHD technologies and standards

30/34

Project Next Steps

- Continue examining current standards and technologies development
 - International efforts, Testing, Communication protocols (e.g. ISO 15118)
- Further exploration of policy mechanisms
 - Specificity, Timing
- Engage key stakeholders and integrate stakeholder input
 - Drive towards consensus


Comments and Discussion

Written Comments

http://www.apep.uci.edu/MHDV_Protocol_Comment.html

Medium- and Heavy-Duty Zero-Emission Vehicle Standardization Assessment: Battery Electric Charging

October 19, 2021

Advanced Power and Energy Program University of California, Irvine Professor Scott Samuelsen (PI) Dr. Kate Forrest (PM)