EXPERIMENTAL INVESTIGATION OF ATOMIZATION AND COMBUSTION BEHAVIOR OF RENEWABLE FUELS

MOTIVATION

- Biodiesels are possible low carbon alternatives for use in gas turbines.
- Differences in physical properties from conventional diesels present challenges to the atomization quality for biodiesels which can lead to increased NO_x emissions.
- Strategies are desired that will enable use of low carbon fuels while conserving atomization performance.

GOAL

 Develop strategies to improve atomization, as well as robust fuel blends that exhibit low emissions output.

APPROACH

- Measure physical properties for the alternative liquid fuels.
- Determine detailed spray behavior using phase Doppler interferometry.
- Compare atomization performance for renewable fuels with that of conventional diesels.

EXPERIMENT

- The following fuels are injected by an air-blast atomizer under identical theoretical power outputs and air mass flow rates^{F1}.
- Velocity and size data for 3 atomizing air pressure drops.

Fuel	Approx. Chemical Formula	Flow Rate ml/min
F-76 Navy Distillate	C _{14.64} H _{30.4}	4.06
DF2	C _{15.43} H _{32.22}	4.10
F-76/Algae Blend	C _{15.95} H _{33.05}	4.19
Methanol	CH ₃ OH	9.12
Ethanol	C ₂ H ₅ OH	6.79
B99	C _{18.76} H _{34.58} O ₂	4.43

 Create a variety of B99-Ethanol blends and obtain the data on density, viscosity, surface tension^{F2}.

F1: Clockwise from Left: Experimental Setup, Cross Section View of Air blast Atomizer, Close Up of Atomizer Nozzle

DIAGNOSTICS

- TSI FSA-4000 Phase Doppler Particle Analyzer (PDPA) coupled with a Laser Doppler Velocimeter (LDV)
- Vision Research Phantom 7.1 high speed camera

RESULTS

- High speed shadowgraphy captures atomization stills in which all four fuels can be qualitatively contrasted^{F3}.
- SMD profiles are plotted as point measurements across the spray plume detailing symmetry and asymmetries^{F4}.
- Weighted overall SMD values weighed against predicted values based on Rizk and Lefebvre's correlation for air-blast atomizers^{F5}.
- B99-ethanol blends display smaller droplet sizes for lower air-to-liquid ratios (ALR) up to 40% ethanol blends^{F5}.

UCI Combustion Laboratory

www.ucicl.uci.edu

F3: High Speed Images (L > R): F-76, BE60, Ethanol, Methanol

F4: SMD distributions for base fuels (L) and additional fuel blends (R)

F5: Weighted SMD values for all fuels (L) and for fuel blends compared with predicted values (R) $\,$

CONCLUSIONS

- Blending of B99 and ethanol leads to improved atomization quality among renewable fuels.
- Baseline fuels achieve superior atomization than biofuels, regardless of blending strategy.
- Future reacting tests will determine how biodiesel compositions and atomization quality impact emissions behavior.

RECENT PUBLICATIONS & PAPERS

A.G. Silver, V.G. McDonell and G.S. Samuelsen, Experimental Investigation of Atomization Behavior of Renewable Biofuels, Proceedings of ILASS Americas, 27th Annual Conference, Portland, Oregon, USA May 18-21, 2014.